Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.contributor.author Ραμπαβίλας, Ανδρέας Δ. el
dc.date.accessioned 2015-04-29T10:59:52Z
dc.date.available 2015-04-29T10:59:52Z
dc.date.issued 2015-04-29
dc.identifier.uri http://hdl.handle.net/11400/9243
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0169260703001305 en
dc.subject Depression
dc.subject Pattern recognition
dc.subject Αναγνώριση προτύπων
dc.subject Κατάθλιψη
dc.title Design and implementation of an SVM-based computer classification system for discriminating depressive patients from healthy controls using the P600 component of ERP signals en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://zbw.eu/stw/descriptor/15410-6
heal.contributorName Κάβουρας, Διονύσης Α. en
heal.identifier.secondary doi:10.1016/j.cmpb.2003.09.003
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2004
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Ventouras, E., Papageorgiou, C. and Rabavilas, A. (July 2004). Design and implementation of an SVM-based computer classification system for discriminating depressive patients from healthy controls using the P600 component of ERP signals. Computer Methods and Programs in Biomedicine. 75(1). pp. 11-22. Elsevier Ireland Ltd: 2004.Available from: http://www.sciencedirect.com/science/article/pii/S0169260703001305 [Accessed 02/12/2003] en
heal.abstract A computer-based classification system has been designed capable of distinguishing patients with depression from normal controls by event-related potential (ERP) signals using the P600 component. Clinical material comprised 25 patients with depression and an equal number of gender and aged-matched healthy controls. All subjects were evaluated by a computerized version of the digit span Wechsler test. EEG activity was recorded and digitized from 15 scalp electrodes (leads). Seventeen features related to the shape of the waveform were generated and were employed in the design of an optimum support vector machine (SVM) classifier at each lead. The outcomes of those SVM classifiers were selected by a majority-vote engine (MVE), which assigned each subject to either the normal or depressive classes. MVE classification accuracy was 94% when using all leads and 92% or 82% when using only the right or left scalp leads, respectively. These findings support the hypothesis that depression is associated with dysfunction of right hemisphere mechanisms mediating the processing of information that assigns a specific response to a specific stimulus, as those mechanisms are reflected by the P600 component of ERPs. Our method may aid the further understanding of the neurophysiology underlying depression, due to its potentiality to integrate theories of depression and psychophysiology. en
heal.publisher Elsevier Ireland Ltd en
heal.journalName Computer Methods and Programs in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Design and implementation of an ...
    Μέγεθος: 299.5Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες