dc.contributor.author | Τσαντής, Σταύρος | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Καλατζής, Ιωάννης | el |
dc.contributor.author | Πήλιουρας, Νικόλαος | el |
dc.contributor.author | Δημητρόπουλος, Νικόλαος | el |
dc.date.accessioned | 2015-04-30T08:23:37Z | |
dc.date.available | 2015-04-30T08:23:37Z | |
dc.date.issued | 2015-04-30 | |
dc.identifier.uri | http://hdl.handle.net/11400/9304 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.umbjournal.org/article/S0301-5629(05)00288-7/abstract | en |
dc.source | http://www.sciencedirect.com/science/article/pii/S0301562905002887 | en |
dc.subject | Classification--Archives | |
dc.subject | Support vectors machine | |
dc.subject | Φορείς υποστήριξης μηχανής | |
dc.subject | Ταξινόμηση | |
dc.title | Development of a support vector machine-based image analysis system for assessing the thyroid nodule malignancy risk on ultrasound | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85026720 | |
heal.contributorName | Νικηφορίδης, Γεώργιος Χ. | el |
heal.identifier.secondary | DOI: http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.009 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2005 | |
heal.bibliographicCitation | Tsantis, S., Cavouras, D., Kalatzis, I., Piliouras, N., Dimitropoulos, N., et al. (November 2005). Development of a support vector machine-based image analysis system for assessing the thyroid nodule malignancy risk on ultrasound. Ultrasound in Medicine and Biology. 31(11). pp. 1451-1459. Elsevier Inc: 2005. Available from: http://www.sciencedirect.com/science/article/pii/S0301562905002887 [Accessed 9/11/2005] | en |
heal.abstract | An SVM-based image analysis system was developed for assessing the malignancy risk of thyroid nodules. Ultrasound images of 120 cytology confirmed thyroid nodules (78 low-risk and 42 high-risk of malignancy) were manually segmented by a physician using a custom developed software in C++. From each nodule, 40 textural features were automatically calculated and were used with the SVM algorithm in the design of the image analysis system. Highest classification accuracy was 96.7%, misdiagnosing two high-risk and two low-risk thyroid nodules. The proposed system may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures. | en |
heal.publisher | Elsevier Inc | en |
heal.journalName | Ultrasound in Medicine & Biology | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: