Εμφάνιση απλής εγγραφής

dc.contributor.author Μπονιάτης, Ιωάννης Σ. el
dc.contributor.author Κωσταρίδου, Έλενα el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Παναγιωτόπουλος, Ηλίας el
dc.date.accessioned 2015-04-30T11:23:40Z
dc.date.available 2015-04-30T11:23:40Z
dc.date.issued 2015-04-30
dc.identifier.uri http://hdl.handle.net/11400/9316
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S1350453306000634 en
dc.subject Osteoarthritis
dc.subject Classification--Archives
dc.subject Οστεοαθρίτιδα
dc.subject Ταξινόμηση
dc.title Assessing hip osteoarthritis severity utilizing a Probabilistic Neural Network based classification scheme en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85095960
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85026720
heal.contributorName Παναγιωτάκης, Γεώργιος Σ. el
heal.identifier.secondary doi:10.1016/j.medengphy.2006.03.003
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Boniatis, I., Costaridou, L., Cavouras, D., Kalatzis, I., Panagiotopoulos, E., et al. (March 2007). Assessing hip osteoarthritis severity utilizing a Probabilistic Neural Network based classification scheme. Medical Engineering & Physics. 29(2). pp. 227-237. Elsevier Ltd: 2007. Available from: http://www.sciencedirect.com/science/article/pii/S1350453306000634 [Accessed 19/04/2006] en
heal.abstract A computer-based classification system is proposed for the characterization of hips from pelvic radiographs as normal or osteoarthritic and for the discrimination among various grades of osteoarthritis (OA) severity. Pelvic radiographs of 18 patients with verified unilateral hip OA were evaluated by three experienced physicians, who assessed OA severity employing the Kellgren and Lawrence scale as: normal, mild/moderate and severe. Five run-length, 75 Laws’ and 5 novel textural features were extracted from the digitized radiographic images of each patient's osteoarthritic and contralateral normal hip joint spaces (HJSs). Each one of the three sets of textural features (run-lengths, Laws’ and novel features) was separately utilized for assigning hips into the three OA severity categories, by means of a probabilistic neural network (PNN) classifier based hierarchical tree structure. The highest classification accuracy (100%) for characterizing hips as normal, of mild/moderate or of severe OA was obtained for the novel textural features set. Additionally, the novel textural features were used to design a mathematical regression model for providing a quantitative estimation of OA severity. Measured OA severity values, as expressed by HJS-narrowing, correlated highly (r = 0.85, p < 0.001) with the predicted values by the mathematical regression model. The proposed system may be valuable in OA-patient management. en
heal.publisher Elsevier Ltd en
heal.journalName Medical Engineering & Physics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Assessing hip osteoarthritis ...
    Μέγεθος: 753.2Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες