Εμφάνιση απλής εγγραφής

dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καγκάδης, Γεώργιος Χ. el
dc.contributor.author Δασκαλάκη, Αναστασία el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.date.accessioned 2015-05-03T09:14:36Z
dc.date.available 2015-05-03T09:14:36Z
dc.date.issued 2015-05-03
dc.identifier.uri http://hdl.handle.net/11400/9527
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0097849307000532 en
dc.subject Hybrid
dc.subject Vessel segmentation
dc.subject Υβρίδιο
dc.subject Τμηματοποίηση σκάφους
dc.title A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Καλατζής, Ιωάννης el
heal.contributorName Καραμεσίνη, Μαρία Τ. el
heal.contributorName Πέτσας, Θεόδωρος el
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.identifier.secondary doi:10.1016/j.cag.2007.01.020
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Kostopoulos, S., Glotsos, D., Kagadis, G., Daskalakis, A., Spyridonos, P., et al. (June 2007). A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA. Computer and Graphics. 31(3). pp. 493-500. Elsevier Ltd: 2007. Available from: http://www.sciencedirect.com/science/article/pii/S0097849307000532 [Accessed 02/02/2007] en
heal.abstract In the present study, a hybrid semi-supervised pixel-based classification algorithm is proposed for the automatic segmentation of intracranial aneurysms in Computed Tomography Angiography images. The algorithm was designed to discriminate image pixels as belonging to one of the two classes: blood vessel and brain parenchyma. Its accuracy in vessel and aneurysm detection was compared with two other reliable methods that have already been applied in vessel segmentation applications: (a) an advanced and novel thresholding technique, namely the frequency histogram of connected elements (FHCE), and (b) the gradient vector flow snake. The comparison was performed by means of the segmentation matching factor (SMF) that expressed how precise and reproducible was the vessel and aneurysm segmentation result of each method against the manual segmentation of an experienced radiologist, who was considered as the gold standard. Results showed a superior SMF for the hybrid (SMF=88.4%) and snake (SMF=87.2%) methods compared to the FHCE (SMF=68.9%). The major advantage of the proposed hybrid method is that it requires no a priori knowledge of the topology of the vessels and no operator intervention, in contrast to the other methods examined. The hybrid method was efficient enough for use in 3D blood vessel reconstruction. en
heal.publisher Elsevier Ltd en
heal.journalName Computers & Graphics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: A hybrid pixel-based classification ...
    Μέγεθος: 493.0Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες