dc.contributor.author | Κωστόπουλος, Σπυρίδων | el |
dc.contributor.author | Γκλώτσος, Δημήτριος | el |
dc.contributor.author | Καγκάδης, Γεώργιος Χ. | el |
dc.contributor.author | Δασκαλάκη, Αναστασία | el |
dc.contributor.author | Σπυρίδωνος, Παναγιώτα Π. | el |
dc.date.accessioned | 2015-05-03T09:14:36Z | |
dc.date.available | 2015-05-03T09:14:36Z | |
dc.date.issued | 2015-05-03 | |
dc.identifier.uri | http://hdl.handle.net/11400/9527 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S0097849307000532 | en |
dc.subject | Hybrid | |
dc.subject | Vessel segmentation | |
dc.subject | Υβρίδιο | |
dc.subject | Τμηματοποίηση σκάφους | |
dc.title | A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.contributorName | Καλατζής, Ιωάννης | el |
heal.contributorName | Καραμεσίνη, Μαρία Τ. | el |
heal.contributorName | Πέτσας, Θεόδωρος | el |
heal.contributorName | Κάβουρας, Διονύσης Α. | el |
heal.contributorName | Νικηφορίδης, Γεώργιος Χ. | el |
heal.identifier.secondary | doi:10.1016/j.cag.2007.01.020 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2007 | |
heal.bibliographicCitation | Kostopoulos, S., Glotsos, D., Kagadis, G., Daskalakis, A., Spyridonos, P., et al. (June 2007). A hybrid pixel-based classification method for blood vessel segmentation and aneurysm detection on CTA. Computer and Graphics. 31(3). pp. 493-500. Elsevier Ltd: 2007. Available from: http://www.sciencedirect.com/science/article/pii/S0097849307000532 [Accessed 02/02/2007] | en |
heal.abstract | In the present study, a hybrid semi-supervised pixel-based classification algorithm is proposed for the automatic segmentation of intracranial aneurysms in Computed Tomography Angiography images. The algorithm was designed to discriminate image pixels as belonging to one of the two classes: blood vessel and brain parenchyma. Its accuracy in vessel and aneurysm detection was compared with two other reliable methods that have already been applied in vessel segmentation applications: (a) an advanced and novel thresholding technique, namely the frequency histogram of connected elements (FHCE), and (b) the gradient vector flow snake. The comparison was performed by means of the segmentation matching factor (SMF) that expressed how precise and reproducible was the vessel and aneurysm segmentation result of each method against the manual segmentation of an experienced radiologist, who was considered as the gold standard. Results showed a superior SMF for the hybrid (SMF=88.4%) and snake (SMF=87.2%) methods compared to the FHCE (SMF=68.9%). The major advantage of the proposed hybrid method is that it requires no a priori knowledge of the topology of the vessels and no operator intervention, in contrast to the other methods examined. The hybrid method was efficient enough for use in 3D blood vessel reconstruction. | en |
heal.publisher | Elsevier Ltd | en |
heal.journalName | Computers & Graphics | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: