Εμφάνιση απλής εγγραφής

dc.contributor.author Γεωργιάδης, Παντελής el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Καγκάδης, Γεώργιος Χ. el
dc.date.accessioned 2015-05-03T10:38:31Z
dc.date.available 2015-05-03T10:38:31Z
dc.date.issued 2015-05-03
dc.identifier.uri http://hdl.handle.net/11400/9539
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com/chapter/10.1007%2F978-3-540-74484-9_21 en
dc.subject Applications
dc.subject Magnetic resonance imaging
dc.subject Εφαρμογές
dc.subject Μαγνητική τομογραφία
dc.title Non-linear least squares features transformation for improving the performance of probabilistic neural networks in classifying human brain tumors on MRI en
heal.type conferenceItem
heal.generalDescription Proceedings of the International conference Computational Science and Its Applications – ICCSA 2007. Kuala Lumpur, Malaysia, 26th-29th August 2007. Springer Berlin Heidelberg: 2007. vol. 4707. Part III. pp. 239-247. en
heal.classification Medicine
heal.classification Neural computers
heal.classification Ιατρική
heal.classification Νευρωνικό δίκτυο
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh87008041
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Νευρωνικό δίκτυο
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85079741
heal.contributorName Σηφάκη, Κοραλία el
heal.contributorName Μάλαμας, Μενέλαος el
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.contributorName Σολωμού, Αικατερίνη el
heal.identifier.secondary DOI 10.1007/978-3-540-74484-9_21
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Georgiadis, P., Cavouras, D., Kalatzis, I., Daskalakis, A., Kagadis, G., et al. (2007). Non-linear least squares features transformation for improving the performance of probabilistic neural networks in classifying human brain tumors on MRI. In the International conference Computational Science and Its Applications – ICCSA 2007. Kuala Lumpur, Malaysia, 26th-29th August 2007. Springer Berlin Heidelberg: 2007. en
heal.abstract The aim of the present study was to design, implement, and evaluate a software system for discriminating between metastases, meningiomas, and gliomas on MRI. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a second degree least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 75 T1-weighted post-contrast MR images (24 metastases, 21 meningiomas, and 30 gliomas). Classification performance was evaluated employing the leave-one-out method and for all possible textural feature combinations. LSFT enhanced the performance of the PNN, achieving 93.33% in discriminating between the three major types of human brain tumors, against 89.33% scored by the PNN alone. Best feature combination for achieving highest discrimination power included the mean value and entropy, which reflect specific properties of texture, i.e. signal strength and inhomogeneity. LSFT improved PNN performance, increased class separability, and resulted in dimensionality reduction. en
heal.publisher Springer Berlin Heidelberg en
heal.fullTextAvailability true
heal.conferenceName International conference Computational Science and Its Applications – ICCSA 2007 en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Non-linear least squares features ...
    Μέγεθος: 451.2Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες