Εμφάνιση απλής εγγραφής

dc.contributor.author Γεωργιάδης, Παντελής el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-04T07:59:26Z
dc.date.available 2015-05-04T07:59:26Z
dc.date.issued 2015-05-04
dc.identifier.uri http://hdl.handle.net/11400/9612
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.mrijournal.com/article/S0730-725X(10)00398-X/abstract en
dc.source http://www.sciencedirect.com/science/article/pii/S0730725X1000398X en
dc.subject Brain--Tumors
dc.subject Magnetic resonance imaging
dc.subject Εγκεφαλικός όγκος
dc.subject Μαγνητική τομογραφία
dc.title Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85016351
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85079741
heal.contributorName Σηφάκη, Κοραλία el
heal.contributorName Μάλαμας, Μενέλαος el
heal.contributorName Σολωμού, Αικατερίνη el
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.identifier.secondary doi:10.1016/j.mri.2010.11.006
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Georgiadis, P., Kostopoulos, S., Cavouras, D., Glotsos, D., Kalatzis, I., et al. (May 2011). Quantitative combination of volumetric MR imaging and MR spectroscopy data for the discrimination of meningiomas from metastatic brain tumors by means of pattern recognition. Magnetic Resonance Imaging. 29(4). pp. 525-535. Elsevier Inc: 2011. Available from: http://www.sciencedirect.com/science/article/pii/S0730725X1000398X [Accessed 11/02/2011] en
heal.abstract The analysis of information derived from magnetic resonance imaging (MRI) and spectroscopy (MRS) has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to investigate the efficiency of the combination of textural MRI features and MRS metabolite ratios by means of a pattern recognition system in the task of discriminating between meningiomas and metastatic brain tumors. The data set consisted of 40 brain MR image series and their corresponding spectral data obtained from patients with verified tumors. The pattern recognition system was designed employing the support vector machines classifier with radial basis function kernel; the system was evaluated using an external cross validation process to render results indicative of the generalization performance to “unknown” cases. The combination of MR textural and spectroscopic features resulted in 92.15% overall accuracy in discriminating meningiomas from metastatic brain tumors. The fusion of the information derived from MRI and MRS data might be helpful in providing clinicians a useful second opinion tool for accurate characterization of brain tumors. en
heal.publisher Elsevier Inc en
heal.journalName Magnetic Resonance Imaging en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Quantitative combination of ...
    Μέγεθος: 1.073Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες