Εμφάνιση απλής εγγραφής

dc.contributor.author Σιδηρόπουλος, Κωνσταντίνος el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-04T08:13:09Z
dc.date.available 2015-05-04T08:13:09Z
dc.date.issued 2015-05-04
dc.identifier.uri http://hdl.handle.net/11400/9613
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0010482511002381 en
dc.subject Decision support systems
dc.subject Rare brain cancers
dc.subject Σύστημα υποστήριξης αποφάσεων
dc.subject Σπάνιες μορφές καρκίνου του εγκεφάλου
dc.title Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://lod.nal.usda.gov/31914
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.contributorName Stonham, John en
heal.identifier.secondary doi:10.1016/j.compbiomed.2011.12.004
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2012
heal.bibliographicCitation Sidiropoulos, K., Glotsos, D., Kostopoulos, S., Ravazoula, P., Kalatzis, I., et al. (April 2012). Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit. Computers in Biology and Medicine. 42(4). pp. 376-386. Elsevier Ltd: 2012. Available from: http://www.sciencedirect.com/science/article/pii/S0010482511002381 [Accessed 23/12/2011] en
heal.abstract In the present study a new strategy is introduced for designing and developing of an efficient dynamic Decision Support System (DSS) for supporting rare cancers decision making. The proposed DSS operates on a Graphics Processing Unit (GPU) and it is capable of adjusting its design in real time based on user-defined clinical questions in contrast to standard CPU implementations that are limited by processing and memory constrains. The core of the proposed DSS was a Probabilistic Neural Network classifier and was evaluated on 140 rare brain cancer cases, regarding its ability to predict tumors' malignancy, using a panel of 20 morphological and textural features Generalization was estimated using an external 10-fold cross-validation. The proposed GPU-based DSS achieved significantly higher training speed, outperforming the CPU-based system by a factor that ranged from 267 to 288 times. System design was optimized using a combination of 4 textural and morphological features with 78.6% overall accuracy, whereas system generalization was 73.8%±3.2%. By exploiting the inherently parallel architecture of a consumer level GPU, the proposed approach enables real time, optimal design of a DSS for any user-defined clinical question for improving diagnostic assessments, prognostic relevance and concordance rates for rare cancers in clinical practice. en
heal.publisher Elsevier Ltd en
heal.journalName Computers in Biology and Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Real time decision support system ...
    Μέγεθος: 1.761Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες