dc.contributor.author | Σιδηρόπουλος, Κωνσταντίνος | el |
dc.contributor.author | Γκλώτσος, Δημήτριος | el |
dc.contributor.author | Κωστόπουλος, Σπυρίδων | el |
dc.contributor.author | Ραβαζούλα, Παναγιώτα | el |
dc.contributor.author | Καλατζής, Ιωάννης | el |
dc.date.accessioned | 2015-05-04T08:13:09Z | |
dc.date.available | 2015-05-04T08:13:09Z | |
dc.date.issued | 2015-05-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/9613 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S0010482511002381 | en |
dc.subject | Decision support systems | |
dc.subject | Rare brain cancers | |
dc.subject | Σύστημα υποστήριξης αποφάσεων | |
dc.subject | Σπάνιες μορφές καρκίνου του εγκεφάλου | |
dc.title | Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.keywordURI | http://lod.nal.usda.gov/31914 | |
heal.contributorName | Κάβουρας, Διονύσης Α. | el |
heal.contributorName | Stonham, John | en |
heal.identifier.secondary | doi:10.1016/j.compbiomed.2011.12.004 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2012 | |
heal.bibliographicCitation | Sidiropoulos, K., Glotsos, D., Kostopoulos, S., Ravazoula, P., Kalatzis, I., et al. (April 2012). Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit. Computers in Biology and Medicine. 42(4). pp. 376-386. Elsevier Ltd: 2012. Available from: http://www.sciencedirect.com/science/article/pii/S0010482511002381 [Accessed 23/12/2011] | en |
heal.abstract | In the present study a new strategy is introduced for designing and developing of an efficient dynamic Decision Support System (DSS) for supporting rare cancers decision making. The proposed DSS operates on a Graphics Processing Unit (GPU) and it is capable of adjusting its design in real time based on user-defined clinical questions in contrast to standard CPU implementations that are limited by processing and memory constrains. The core of the proposed DSS was a Probabilistic Neural Network classifier and was evaluated on 140 rare brain cancer cases, regarding its ability to predict tumors' malignancy, using a panel of 20 morphological and textural features Generalization was estimated using an external 10-fold cross-validation. The proposed GPU-based DSS achieved significantly higher training speed, outperforming the CPU-based system by a factor that ranged from 267 to 288 times. System design was optimized using a combination of 4 textural and morphological features with 78.6% overall accuracy, whereas system generalization was 73.8%±3.2%. By exploiting the inherently parallel architecture of a consumer level GPU, the proposed approach enables real time, optimal design of a DSS for any user-defined clinical question for improving diagnostic assessments, prognostic relevance and concordance rates for rare cancers in clinical practice. | en |
heal.publisher | Elsevier Ltd | en |
heal.journalName | Computers in Biology and Medicine | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: