Εμφάνιση απλής εγγραφής

dc.contributor.author Ιατρίδης, Α.Ι. el
dc.contributor.author Δριτσέλης, Χρήστος Δ. el
dc.contributor.author Σαρρής, Ιωάννης Ε. el
dc.contributor.author Βλάχος, Νικόλας Σ. el
dc.date.accessioned 2015-05-07T19:13:34Z
dc.date.available 2015-05-07T19:13:34Z
dc.date.issued 2015-05-07
dc.identifier.uri http://hdl.handle.net/11400/9894
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.tandfonline.com/ en
dc.subject electrically conducting fluid
dc.subject axial magnetic field
dc.subject cylindrical wall
dc.subject Prandtl numbers
dc.subject Rayleigh number
dc.subject ηλεκτρικά αγώγιμο ρευστό
dc.subject αξονικό μαγνητικό πεδίο
dc.subject κυλινδρικό τοίχωμα
dc.subject αριθμοί Prandtl
dc.subject αριθμός Rayleigh
dc.title Transient laminar MHD natural convection cooling in a vertical cylinder en
heal.type journalArticle
heal.classification Technology
heal.classification Engineering
heal.classification Τεχνολογία
heal.classification Μηχανική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI http://zbw.eu/stw/descriptor/19795-3
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Μηχανική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85111596
heal.identifier.secondary DOI:10.1080/10407782.2012.703082
heal.language en
heal.access free
heal.publicationDate 2012
heal.bibliographicCitation IATRIDIS, A.I., DRITSELIS, C.D., SARRIS, I.E. & VLACHOS, N.S. (2012). Transient laminar MHD natural convection cooling in a vertical cylinder. Numerical Heat Transfer: Part A - Applications. [Online] 62 (7). p.531-546. Available from: http://www.tandfonline.com/[Accessed 27/09/2012] en
heal.abstract A numerical study is presented of transient laminar natural convection cooling of an electrically conductive fluid, placed in a vertical cylinder in the presence of an axial magnetic field. The cylindrical wall is suddenly cooled to a uniform temperature, thus setting the fluid to motion. The cooling process starts with the development of momentum and thermal boundary layers along the cylindrical cold wall, followed by the intrusion of the cooled fluid into the bulk, and finally, by fluid stratification. A range of Hartmann, Rayleigh, and Prandtl numbers are studied for which the flow remains laminar in all stages. It is found that the increase of the magnetic field reduces the heat transfer rate and decelerates the cooling process. This can be attributed to the damping of the fluid motion by the magnetic field, which results in the domination of conduction over convection heat transfer. The increase of the Rayleigh number enhances heat transfer, but the cooling process lasts longer due to the higher temperature of the hot fluid. The flow deceleration and the reduction of heat transfer are less intense for fluids with low Prandtl number. en
heal.publisher Taylor & Francis en
heal.journalName Numerical Heat Transfer, Part A: Applications en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 10407782%2E2012%2E703082.pdf
    Μέγεθος: 1.095Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες