dc.contributor.author | Ξύδας, Ιωάννης | el |
dc.contributor.author | Νικολοπούλου, Νάντια | el |
dc.contributor.author | Μιαούλης, Γεώργιος | el |
dc.date.accessioned | 2015-05-08T08:43:59Z | |
dc.date.available | 2015-05-08T08:43:59Z | |
dc.date.issued | 2015-05-08 | |
dc.identifier.uri | http://hdl.handle.net/11400/9923 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://3ia.teiath.gr/ | en |
dc.source | http://users.teiath.gr/yxydas/Paper4_xydas.pdf | en |
dc.subject | Social Networks | |
dc.subject | Data Mining | |
dc.subject | Social Network Data Mining | |
dc.subject | Visual analytics | |
dc.subject | Social Network Visualization | |
dc.subject | Twitter Visualization | |
dc.subject | Κοινωνικά δίκτυα | |
dc.subject | Εξόρυξη δεδομένων | |
dc.subject | Εξόρυξη δεδομένων από κοινωνικά δίκτυα | |
dc.subject | Οπτική αναλυτική | |
dc.subject | Απεικόνιση δεδομένων κοινωνικών δικτύων | |
dc.subject | Απεικόνιση δεδομένων twitter | |
dc.title | Social networks data mining using visual analytics | en |
heal.type | conferenceItem | |
heal.classification | Technology | |
heal.classification | Computer science | |
heal.classification | Τεχνολογία | |
heal.classification | Πληροφορική | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10470-6 | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2007004134 | |
heal.identifier.secondary | ISBN: 2-914256-13-2 | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 2011-05 | |
heal.bibliographicCitation | Nikolopoulou, K., Xydas, I. and Miaoulis, G. (2011) Social networks data mining using visual analytics. In "31A International Conference on Computer Graphics and Artificial Intelligence". Athens: Technological Educational Institute of Athens. Available from: http://users.teiath.gr/yxydas/Paper4_xydas.pdf [Accessed: 08/05/2015]. | en |
heal.abstract | Internet - based social networks are facilities (typically web sites) where people can form online communities, connect to each other and share information. This paper explores the are a of applying visual analytics to represent data and underlying relationships in social networks – more specifically, on the Twitter micro - blogging service. Networks of this kind can be treated as graphs, where each node corresponds to a user or a specific piece of information and edges connect such nodes representing relationships. Visualizing graphs is a vast research area i n its own right, with numerous applications in science and engineering. In this assignment we are using readily - available software to visualize parts of the network , via filtering or other operations, in order to be able to draw conclusions . Social networks are an excellent candidate to apply visual analytics to , due to their exponential growth when new users join | en |
heal.publisher | Technological Educational Institute of Athens | en |
heal.publisher | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας | el |
heal.fullTextAvailability | true | |
heal.conferenceName | 31A International Conference on Computer Graphics and Artificial Intelligence | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: