Εμφάνιση απλής εγγραφής

dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Βερβερίδης, Κ. el
dc.contributor.author Νικηφορίδης, Γεώργιος Χ. el
dc.date.accessioned 2015-05-08T09:17:02Z
dc.date.issued 2015-05-08
dc.identifier.uri http://hdl.handle.net/11400/9930
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://informahealthcare.com/doi/abs/10.1080/14639230110065757 en
dc.subject Classification grading of bladder
dc.subject Carcinoma
dc.subject Βαθμολογική κατάταξη ουροδόχου κύστης
dc.subject Καρκίνωμα
dc.title Computer-based grading of haematoxylin-eosin stained tissue sections of urinary bladder carcinomas en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1080/14639230110065757
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2001
heal.bibliographicCitation Spyridonos, P., Ravazoula, P., Cavouras, D., Berberidis, K. and Nikiforidis. G. (2001). Computer-based grading of haematoxylin-eosin stained tissue sections of urinary bladder carcinomas. Informatics for Health and Social Care. 26(3). pp. 179-190. Informa Healthcare : 2001. en
heal.abstract Purpose : A computer-based image analysis system was developed for assessing the malignancy of urinary bladder carcinomas in a more objective manner. Tumours characterized in accordance with the WHO grading system were classified into low-risk (grades I and II) and high-risk (grades III and IV). Materials and methods : Images from 92 haematoxylin-eosin stained sections of urinary bladder carcinomas were digitized and analysed. An adequate number of nuclei were segmented from each image for morphologic and textural analysis. Image segmentation was performed by an efficient algorithm, which used pattern recognition methods to automatically characterize image pixels as nucleus or background. Image classification into low-risk or high-risk tumours was performed by means of the quadratic non-linear Bayesian classifier, which was designed employing 36 textural and morphological features of the nucleus. Results : Automatic segmentation of nuclei on all images was about 90% on average. Overall system accuracy in correctly classifying tumours into low-risk or high-risk was 88%, employing the leave-one-out method and the best combination of three textural and one morphological feature. Classification accuracy for low-risk tumours was 88.8% and for high-risk tumours 86.2%. Conclusion : The proposed image analysis system may be of value to the objective assessment of the malignancy of urine bladder carcinomas, since it relies on nuclear parameters that are employed in visual grading and their prognostic value has been proved. en
heal.publisher Informa Healthcare en
heal.journalName Informatics for Health and Social Care en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Computer-based grading of ...
    Μέγεθος: 372.0Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες