Εμφάνιση απλής εγγραφής

dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.contributor.author Νικηφορίδης, Γεώργιος Χ. el
dc.date.accessioned 2015-05-08T10:03:39Z
dc.date.issued 2015-05-08
dc.identifier.uri http://hdl.handle.net/11400/9944
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://europepmc.org/abstract/med/12508689 en
dc.subject Histologic bladder sections
dc.subject Neural computers
dc.subject Ιστολογικές τομές κύστης
dc.subject Νευρωνικό δίκτυο
dc.title Neural network-based segmentation and classification system for automated grading of histologic sections of bladder carcinoma en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh87008041
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2002
heal.bibliographicCitation Spyridonos, P., Cavouras, D., Ravazoula, P. and Nikiforidis, G. (2002). Neural network-based segmentation and classification system for automated grading of histologic sections of bladder carcinoma. Analytical and Quantitative Cytology and Histology. 24(60. pp. 317-324. Journal of Reproductive Medicine: 2002. en
heal.abstract OBJECTIVE: To develop an image analysis system for automated nuclear segmentation and classification of histologic bladder sections employing quantitative nuclear features. STUDY DESIGN: Ninety-two cases were classified into three classes by experienced pathologists according to the WHO grading system: 18 cases as grade 1, 45 as grade 2, and 29 as grade 3. Nuclear segmentation was performed by means of an artificial neural network (ANN)-based pixel classification algorithm, and each case was represented by 36 nuclei features. Automated grading of bladder tumor histologic sections was performed by an ANN classifier implemented in a two-stage hierarchic tree. RESULTS: On average, 95% of the nuclei were correctly detected. At the first stage of the hierarchic tree, classifier performance in discriminating between cases of grade 1 and 2 and cases of grade 3 was 89%. At the second stage, 79% of grade 1 cases were correctly distinguished from grade 2 cases. CONCLUSION: The proposed image analysis system provides the means to reduce subjectivity in grading bladder tumors and may contribute to more accurate diagnosis and prognosis since it relies on nuclear features, the value of which has been confirmed. en
heal.publisher Journal of Reproductive Medicine en
heal.journalName Analytical and Quantitative Cytology and Histology en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες