Εμφάνιση απλής εγγραφής

dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.contributor.author Νικηφορίδης, Γεώργιος Χ. el
dc.date.accessioned 2015-05-08T10:14:34Z
dc.date.issued 2015-05-08
dc.identifier.uri http://hdl.handle.net/11400/9948
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://informahealthcare.com/doi/abs/10.1080/1463923021000043723 en
dc.subject Prognostic system
dc.subject Classification
dc.subject Προγνωστικό σύστημα
dc.subject Ταξινόμηση
dc.title A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1080/1463923021000043723
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2002
heal.bibliographicCitation Spyridonos, P., Cavouras, D., Ravazoula, P. and Nikiforidis, G. (2002). A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence. Informatics for Health and Social Care. 27(2). pp. 111-122. Informa Healthcare: 2002. en
heal.abstract Purpose : A computer-based system was designed, incorporating subjective criteria employed by pathologists in their usual microscopic observation of tissue samples and measurements of nuclear characteristics, with the purpose of automatically assessing urinary bladder tumour grade and predicting cancer recurrence. Material and Methods : Ninety-two cases with urine bladder carcinoma were diagnosed and followed-up. Forty-seven patients had cancer recurrence. Each case was represented by eight histological (subjective) features, evaluated by pathologists, and thirty-six automatically extracted nuclear features. Grading and prognosis were performed by neural-network based classifiers employing both histological and nuclear features. Results : Employing a combination of histological and nuclear features, highest classification accuracy was 82%, 80.5%, and 93.1% for tumours of grade I, II and III respectively. The prognostic-system, gave a significant prognostic assessment of 72.8% with a confidence of 74.5% that cancer might recur and of 71.1% that might not, employing two histological features and two textural nuclear features. Conclusions : The system for grading and predicting tumour recurrence may serve as a second opinion tool and features employed for designing the system may be of value to pathologists using descriptive grading systems. en
heal.publisher Informa Healthcare en
heal.journalName Informatics for Health and Social Care en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες