dc.contributor.author | Τασουλής, Δημήτρης Κ. | el |
dc.contributor.author | Σπυρίδωνος, Παναγιώτα Π. | el |
dc.contributor.author | Παυλίδης, Νίκος Γ. | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Ραβαζούλα, Παναγιώτα | el |
dc.date.accessioned | 2015-05-08T11:08:17Z | |
dc.date.available | 2015-05-08T11:08:17Z | |
dc.date.issued | 2015-05-08 | |
dc.identifier.uri | http://hdl.handle.net/11400/9959 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://link.springer.com/chapter/10.1007/978-3-540-45224-9_29 | en |
dc.subject | Algorithm | |
dc.subject | Classification | |
dc.subject | Αλγόριθμος | |
dc.subject | Ταξινόμηση | |
dc.title | Urinary bladder tumor grade diagnosis using on-line trained neural networks | en |
heal.type | conferenceItem | |
heal.generalDescription | Proceedings, Part I. | en |
heal.classification | Medicine | |
heal.classification | Neural computers | |
heal.classification | Ιατρική | |
heal.classification | Νευρωνικό δίκτυο | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh87008041 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Νευρωνικό δίκτυο | |
heal.contributorName | Νικηφορίδης, Γεώργιος Σ. | el |
heal.contributorName | Βραχάτης, Μιχαήλ Ν. | el |
heal.identifier.secondary | DOI 10.1007/978-3-540-45224-9_29 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2003 | |
heal.bibliographicCitation | Tasoulis, D., Spyridonos, P., Pavlidis, N., Cavouras, D., Ravazoula, P., et al. (2003). Urinary bladder tumor grade diagnosis using on-line trained neural networks. Proceedings of the 7th International Conference KES 2003. Oxford, UK, September 2003. | en |
heal.abstract | This paper extends the line of research that considers the application of Artificial Neural Networks (ANNs) as an automated system, for the assignment of tumors grade. One hundred twenty nine cases were classified according to the WHO grading system by experienced pathologists in three classes: Grade I, Grade II and Grade III. 36 morphological and textural, cell nuclei features represented each case. These features were used as an input to the ANN classifier, which was trained using a novel stochastic training algorithm, namely, the Adaptive Stochastic On-Line method. The resulting automated classification system achieved classification accuracy of 90%, 94.9% and 97.3% for tumors of Grade I, II and III respectively. | en |
heal.publisher | Springer Berlin Heidelberg | en |
heal.fullTextAvailability | true | |
heal.conferenceName | International Conference kes 2003 | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: