Εμφάνιση απλής εγγραφής

dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Μπουγιούκος, Παναγιώτης el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.date.accessioned 2015-05-12T13:58:43Z
dc.date.available 2015-05-12T13:58:43Z
dc.date.issued 2015-05-12
dc.identifier.uri http://hdl.handle.net/11400/10205
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://bioinformatics.oxfordjournals.org/content/23/17/2265.short en
dc.subject Image analysis
dc.subject Microarray images
dc.subject Εικόνες μικροσυστοιχιών
dc.subject Ανάλυση εικόνας
dc.title Improving gene quantification by adjustable spot-image restoration en
heal.type journalArticle
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh98002813
heal.contributorName Καλατζής, Ιωάννης el
heal.contributorName Καγκάδης, Γεώργιος Χ. el
heal.contributorName Αργυρόπουλος, Χρήστος el
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.identifier.secondary doi: 10.1093/bioinformatics/btm337
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Daskalakis, A., Cavouras, D., Bougioukos, P., Kostopoulos, S., Glotsos, D., et al. (2007). Improving gene quantification by adjustable spot-image restoration. Bioinformatics. 23(17). pp. 2265-2272. Oxford University Press: 2007. Available from: http://bioinformatics.oxfordjournals.org/content/23/17/2265.short [Accessed 28/06/2007] en
heal.abstract Motivation: One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed framework, incorporates in the microarray image processing pipeline a novel combination of spot adjustable image analysis and processing techniques and consists of the following stages: (1) gridding for facilitating spot identification, (2) clustering (unsupervised discrimination between spot and background pixels) applied to spot image for automatic local noise assessment, (3) modeling of local image restoration process for spot image conditioning (adjustable wiener restoration using an empirically determined degradation function), (4) automatic spot segmentation employing seeded-region-growing, (5) intensity extraction and (6) assessment of the reproducibility (real data) and the validity (simulated data) of the extracted gene expression levels. Results: Both simulated and real microarray images were employed in order to assess the performance of the proposed framework against well-established methods implemented in publicly available software packages (Scanalyze and SPOT). Regarding simulated images, the novel combination of techniques, introduced in the proposed framework, rendered the detection of spot areas and the extraction of spot intensities more accurate. Furthermore, on real images the proposed framework proved of better stability across replicates. Results indicate that the proposed framework improves spots’ segmentation and, consequently, quantification of gene expression levels. Availability: All algorithms were implemented in Matlab™ (The Mathworks, Inc., Natick, MA, USA) environment. The codes that implement microarray gridding, adaptive spot restoration and segmentation/intensity extraction are available upon request. Supplementary results and the simulated microarray images used in this study are available for download from: ftp://users:bioinformatics@mipa.med.upatras.gr en
heal.publisher Oxford University Press en
heal.journalName Bioinformatics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Improving gene quantification ...
    Μέγεθος: 205.8Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες