Εμφάνιση απλής εγγραφής

dc.contributor.author Djidjev, Hristo N. en
dc.contributor.author Πάντζιου, Γραμματή Ε. el
dc.contributor.author Ζαρολιάγκης, Χρήστος el
dc.date.accessioned 2015-05-29T19:20:43Z
dc.date.issued 2015-05-29
dc.identifier.uri http://hdl.handle.net/11400/11905
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com/chapter/10.1007%2F3-540-54233-7_145 en
dc.subject επίπεδα γραφήματα
dc.subject αλγόριθμοι
dc.subject επεξεργαστές
dc.subject προεπεξεργασία
dc.subject αιώρα αποσύνθεση
dc.subject planar graphs
dc.subject algorithms
dc.subject processors
dc.subject preprocessing
dc.subject hammock decomposition
dc.title Computing shortest paths and distances in planar graphs en
heal.type conferenceItem
heal.classification Επιστήμες
heal.classification Πληροφορική
heal.classification Science
heal.classification Computer science
heal.classificationURI **N/A**-Επιστήμες
heal.classificationURI **N/A**-Πληροφορική
heal.classificationURI http://skos.um.es/unescothes/C03532
heal.classificationURI http://skos.um.es/unescothes/C00750
heal.identifier.secondary DOI: 10.1007/3-540-54233-7_145
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. el
heal.publicationDate 1991-07-08
heal.bibliographicCitation Djidjev, H., Pantziou, G. and Zaroliagis, C. (1991) Computing shortest paths and distances in planar graphs. Proceedings of the 18th International Colloquium. 510, pp.327-338. Madrid, Spain: Springer Berlin Heidelberg en
heal.abstract We provide here efficient sequential and parallel solutions to the following problem: given a planar digraph G (with real edge weights but no negative cycles) for preprocessing, answer on-line queries requesting the shortest distance (or path) between any two vertices in G. Our algorithms for preprocessing need O(n log n + q 2) space and O(n log n + q 2) sequential time. (Here q is the cardinality of a set of faces of a planar embedding of G that cover all vertices.)A parallel implementation on a CREW PRAM needs also O(n log n + q 2) space and runs in O(log2 n) time using O(n + M(q)) processors (where M(q) is the number of processors required to multiply two q × q matrices in O(log q) time), provided that the q faces are given by the input.This enables us to achieve O(log n) time using a single processor for a “distance” query, or O(L + log n) time for a “path” query (where L is the length of the path). Note that this is a considerable improvement over previous results in the case where q = o(n). Our techniques are based on the hammock decomposition of a planar digraph and the use of separators for computing quickly internal distances in the graph. Several other results are achieved. For outerplanar graphs, our algorithms preprocess the graph in O(n logn) space and run either in O(n log n) sequential time, or in O(log2 n) time using O(n) processors on a CREW PRAM. A “distance” query can be answered in O(log n) time using a single processor. A “path” query is answered in O(L + log n) time. An optimal solution is given in the case of trees. We achieve O(1) time per “distance” query andwe need O(n) sequential time, or O(log n) time and O(n/log n) processors (on an EREW PRAM) for preprocessing. A “path” query is answered in O(L) time. en
heal.publisher Springer Berlin Heidelberg en
heal.fullTextAvailability false
heal.conferenceName Proceedings of the 18th International Colloquium en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: chp%3A10.1007%2F3-540-54233-7_ ...
    Μέγεθος: 1.003Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες