dc.contributor.author | Μπράτσος, Αθανάσιος Γ. | el |
dc.contributor.author | Πετράκης, Λεωνίδας Α. | el |
dc.date.accessioned | 2015-06-04T19:22:02Z | |
dc.date.available | 2015-06-04T19:22:02Z | |
dc.date.issued | 2015-06-04 | |
dc.identifier.uri | http://hdl.handle.net/11400/15119 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.scopus.com/record/display.url?origin=recordpage&eid=2-s2.0-77954650215&citeCnt=0&noHighlight=false&sort=plf-f&src=s&sid=2DCF200B00379677732236F1AFC88BE5.ZmAySxCHIBxxTXbnsoe5w%3a3440&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2815724401200%29&relpos=4 | en |
dc.subject | Ρητό σύστημα | |
dc.subject | Σχήμα πεπερασμένων διαφορών | |
dc.subject | Τοπικό σφάλμα αποκοπής | |
dc.subject | Τροποποιημένο πρόγραμμα | |
dc.subject | προγνωστικός παράγοντας διόρθωσης | |
dc.subject | Explicit scheme | |
dc.subject | Finite-difference scheme | |
dc.subject | Local truncation errors | |
dc.subject | Modified scheme | |
dc.subject | Predictor corrector | |
dc.title | A modified predictor-corrector scheme for the Klein-Gordon equation | en |
heal.type | journalArticle | |
heal.classification | Επιστήμες | |
heal.classification | Μαθηματικά | |
heal.classification | Science | |
heal.classification | Mathematics | |
heal.classificationURI | **N/A**-Επιστήμες | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.classificationURI | http://skos.um.es/unescothes/C03532 | |
heal.classificationURI | http://skos.um.es/unescothes/C02437 | |
heal.identifier.secondary | DOI: 10.1080/00207160802545890 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ναυπηγών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2010-07 | |
heal.bibliographicCitation | Bratsos, A.G. and Petrakis, L.A. (2010) A modified predictor-corrector scheme for the Klein-Gordon equation. International Journal of Computer Mathematics. [Online] 87 (8), pp.1892-1904. Available from: http://www.scopus.com [Accessed 04/06/2015] | en |
heal.abstract | A numerical method based on a three-time level finite-difference scheme has been proposed for the solution of the two forms of the Klein-Gordon equation. The method, which is analysed for local truncation error and stability, leads to the solution of a nonlinear system. To avoid solving it, a predictor-corrector scheme using as predictor a second-order explicit scheme is proposed. The procedure of the corrector is modified by considering, as known, the already evaluated corrected values instead of the predictor ones. This modified scheme is applied to problems possessing periodic, kinks and soliton waves. The accuracy as well as the long-time behaviour of the proposed scheme is discussed and comparisons with the relevant known in the bibliography schemes are given. | en |
heal.publisher | Taylor & Francis | en |
heal.journalName | International Journal of Computer Mathematics | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: