dc.contributor.author | Μπράτσος, Αθανάσιος Γ. | el |
dc.date.accessioned | 2015-06-05T17:16:09Z | |
dc.date.available | 2015-06-05T17:16:09Z | |
dc.date.issued | 2015-06-05 | |
dc.identifier.uri | http://hdl.handle.net/11400/15166 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.scopus.com/record/display.url?origin=recordpage&eid=2-s2.0-35648972091&citeCnt=0&noHighlight=false&sort=plf-f&src=s&sid=2DCF200B00379677732236F1AFC88BE5.ZmAySxCHIBxxTXbnsoe5w%3a3440&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2815724401200%29&relpos=17 | en |
dc.subject | Εξίσωση Boussinesq | |
dc.subject | Μέθοδος των πεπερασμένων διαφορών | |
dc.subject | προγνωστικός παράγοντας διόρθωσης | |
dc.subject | Σολιτόνια | |
dc.subject | Boussinesq equation | |
dc.subject | Finite differences | |
dc.subject | Predictor-corrector | |
dc.subject | Solitons | |
dc.title | A second order numerical scheme for the solution of the one-dimensional Boussinesq equation | en |
heal.type | journalArticle | |
heal.classification | Μαθηματικά | |
heal.classification | Πληροφορική | |
heal.classification | Mathematics | |
heal.classification | Computer science | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | http://skos.um.es/unescothes/C02437 | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85048348 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85124672 | |
heal.identifier.secondary | DOI: 10.1007/s11075-007-9126-y | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ναυπηγών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2007-09 | |
heal.bibliographicCitation | Bratsos, A.G. (2007) A second order numerical scheme for the solution of the one-dimensional Boussinesq equation. Numerical Algorithms. [Online] 46 (1), pp.45-58. Available from: http://www.scopus.com [Accessed 05/06/2015] | en |
heal.abstract | A predictor-corrector (P-C) scheme is applied successfully to a nonlinear method arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation. The resulting nonlinear finite-difference scheme, which is analyzed for local truncation error and stability, is solved using a P-C scheme, in which the predictor and the corrector are explicit schemes of order 2. This scheme is accelerated by using a modification (MPC) in which the already evaluated values are used for the corrector. The behaviour of the P-C/MPC schemes is tested numerically on the Boussinesq equation already known from the bibliography free of boundary conditions. The numerical results are derived for both the bad and the good Boussinesq equation and conclusions from the relevant known results are derived. | en |
heal.publisher | Springer US | en |
heal.journalName | Numerical Algorithms | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: