dc.contributor.author | Ζώης, Ηλίας Ν. | el |
dc.contributor.author | Αναστασόπουλος, Βασίλειος | el |
dc.date.accessioned | 2015-01-09T11:00:16Z | |
dc.date.available | 2015-01-09T11:00:16Z | |
dc.date.issued | 2015-01-09 | |
dc.identifier.uri | http://hdl.handle.net/11400/3608 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com | en |
dc.subject | Writer identification | |
dc.subject | Morphological features | |
dc.subject | Ταυτοποίηση συγγραφέα | |
dc.subject | Μορφολογικά χαρακτηριστικά | |
dc.title | Morphological waveform coding for writer identification | en |
heal.type | journalArticle | |
heal.classification | Electrical engineering | |
heal.classification | Electronics | |
heal.classification | Ηλεκτρολογική μηχανική | |
heal.classification | Ηλεκτρονική | |
heal.classificationURI | http://skos.um.es/unescothes/C01311 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10455-2 | |
heal.classificationURI | **N/A**-Ηλεκτρολογική μηχανική | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.identifier.secondary | doi:10.1016/S0031-3203(99)00063-1 | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2000 | |
heal.bibliographicCitation | Zois, E. and Anastassopoulos, V. (March 2000). Morphological waveform coding for writer identification. Pattern Recognition. 33(3). pp. 385-398. Elsevier Science Ltd. Available from: http://www.sciencedirect.com/ [Accessed 09/12/1999] | en |
heal.abstract | Writer identification is carried out using handwritten text. The feature vector is derived by means of morphologically processing the horizontal profiles (projection functions) of the words. The projections are derived and processed in segments in order to increase the discrimination efficiency of the feature vector. Extensive study of the statistical properties of the feature space is provided. Both Bayesian classifiers and neural networks are employed to test the efficiency of the proposed feature. The achieved identification success using a long word exceeds 95%. | en |
heal.publisher | Elsevier Science Ltd | en |
heal.journalName | Pattern Recognition | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: