dc.contributor.author | Ζώης, Ηλίας Ν. | el |
dc.contributor.author | Αναστασόπουλος, Βασίλειος | el |
dc.date.accessioned | 2015-01-09T19:02:45Z | |
dc.date.issued | 2015-01-09 | |
dc.identifier.uri | http://hdl.handle.net/11400/3657 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Discrimination system | |
dc.subject | Fusion, Latent heat of | |
dc.subject | Σύστημα διακρίσεων | |
dc.subject | Συγχώνευση | |
dc.title | Decision fusion for writer discrimination | en |
heal.type | conferenceItem | |
heal.generalDescription | Proceedings | en |
heal.classification | Electrical engineering | |
heal.classification | Electronics | |
heal.classification | Ηλεκτρολογική μηχανική | |
heal.classification | Ηλεκτρονική | |
heal.classificationURI | http://skos.um.es/unescothes/C01311 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10455-2 | |
heal.classificationURI | **N/A**-Ηλεκτρολογική μηχανική | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85052595 | |
heal.identifier.secondary | 10.1109/ICDSP.1997.628444 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 1997 | |
heal.bibliographicCitation | Zois, E. and Anastassopoulos, V. (1997). Decision fusion for writer discrimination. In the 13th International Conference on DigitalSignal Processing. vol. 2. Santorini, 2nd-4th July 1997. pp. 687 - 690. | en |
heal.abstract | In this work the performance improvement of a one-word-based writer discrimination system is described. This is achieved when decision fusion is employed to combine the classification results (decisions) from N words. Only the binary classification problem (discriminate between two persons) is examined. In the proposed approach the randomized Neyman Pearson (N-P) test is applied. A special case of feature statistics is considered in order to fit the randomized N-P test and simultaneously achieve minimum classification error for each separate decision. Using only a few words the performance of the discrimination system is radically improved as far as the maximum classification error is concerned. | en |
heal.publisher | [χ.ό.] | el |
heal.fullTextAvailability | true | |
heal.conferenceName | International Conference on DigitalSignal Processing | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: