In this work we present a generic methodology for implementing, within the CATIA® modelling environment, a para-metric model for typical free-form ships so that each instance is represented as a tangentially-continuous (G1-continuous) NURBS multi-patch surface. The methodology has been applied for constructing a container-ship paramet-ric model that is able to generate robustly and efficiently valid hulls for a broad value range of the associated exposed parameters. The so-constructed parametric model is integrated with an, in-house developed, wave-resistance solver and the modeFrontier® optimizer for setting up an environment, that has been tested for optimizing the bow area of a con-tainer ship against the criterion of minimum wave resistance under the constraint of given displacement. Our solver adopts the Neumann-Kelvin formulation and combines the Boundary Element Method (BEM) with Isogeometric-Analysis (IGA) for the numerical solution of the resulting Boundary Integral Equation (BIE). It should be stressed that the IGA concept, recently introduced by Tom Hughes and his group at the University of Texas at Austin, aims to intrin-sically integrate CAD with Analysis (FEM/BEM solver) by communicating the CAD model of the computation field to the solver without any approximation, e.g., panelization.