Εμφάνιση απλής εγγραφής

dc.contributor.author Μπουγιούκος, Παναγιώτης el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-04T07:27:32Z
dc.date.issued 2015-05-04
dc.identifier.uri http://hdl.handle.net/11400/9610
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.maneyonline.com/doi/abs/10.1179/136821909X12581187860095 en
dc.subject Image segmentation
dc.subject Mammography
dc.subject Τμηματοποίηση εικόνας
dc.subject Μαστογραφία
dc.title Fuzzy C-Means driven FHCE contextual segmentation method for mammographic micro-calcifications detection en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Δημητρόπουλος, Νικόλαος el
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.identifier.secondary DOI: http://dx.doi.org/10.1179/136821909X12581187860095
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2010
heal.bibliographicCitation Bougioukos, P., Glotsos, D., Kostopoulos, S., Daskalakis, A., Kalatzis, I., et al. (June 2010). Fuzzy C-Means driven FHCE contextual segmentation method for mammographic micro-calcifications detection. Imaging Science Journal. 58(3). pp. 146-154. Maney Publishing: 2010. en
heal.abstract The frequency histogram of connected elements (FHCE) is a recently proposed algorithm that has successfully been applied in various medical image segmentation tasks. The FHCE is based on the idea that most pixels belong to the same class as their neighbouring pixels. However, the FHCE performance relies to a great extent on the optimal selection of a threshold parameter. Since evaluating segmentation results is a highly subjective process, a collection of threshold values must typically be examined. No algorithm has been proposed to automate the determination of the threshold parameter value of the FHCE. This study presents a method based on the fuzzy C-means clustering algorithm, designed to automatically generate optimal threshold values for the FHCE. This new approach was applied as a part of a structured sequence of image processing steps in order to facilitate segmentation of microcalcifications in digitized mammograms. A unique threshold value was generated for each mammogram, taking into account the different grey-level patterns based on different compositions of various breast tissues in it. The segmentation algorithm was tested on 100 mammograms (50 collected from the Mammographic Image Analysis Society and 50 normal mammograms onto which a number of simulated microcalcifications were generated). The algorithm was able to detect subtle microcalcifications with sensitivity ranging from 93 to 98%, False alarm ratio from 3 to 5% and false negatives variability from 2 to 3%. en
heal.publisher Maney Publishing el
heal.journalName Imaging Science Journal el
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Fuzzy C-Means driven FHCE ...
    Μέγεθος: 291.2Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες