dc.contributor.author | Μπράτσος, Αθανάσιος Γ. | el |
dc.contributor.author | Twizell, E.H. | en |
dc.date.accessioned | 2015-06-05T19:08:29Z | |
dc.date.available | 2015-06-05T19:08:29Z | |
dc.date.issued | 2015-06-05 | |
dc.identifier.uri | http://hdl.handle.net/11400/15192 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.tandfonline.com/doi/pdf/10.1080/00207169608804516 | en |
dc.subject | Προσέγγιση θεωρίας | |
dc.subject | Προβλήματα συνοριακών τιμών | |
dc.subject | Σύγκλιση των αριθμητικών μεθόδων | |
dc.subject | Ανάλυση σφάλματος | |
dc.subject | Μέθοδος πεπερασμένων διαφορών | |
dc.subject | Approximation theory | |
dc.subject | Boundary value problems | |
dc.subject | Convergence of numerical methods | |
dc.subject | Error analysis (Mathematics) | |
dc.subject | Finite difference method | |
dc.title | The solution of the sine-Gordon equation using the method of lines | en |
heal.type | journalArticle | |
heal.classification | Μαθηματικά | |
heal.classification | Εφαρμοσμένα μαθηματικά | |
heal.classification | Mathematics | |
heal.classification | Applied mathematics | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.classificationURI | **N/A**-Εφαρμοσμένα μαθηματικά | |
heal.classificationURI | http://skos.um.es/unescothes/C02437 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh93002523 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85006190 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85016102 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85044724 | |
heal.identifier.secondary | DOI: 10.1080/00207169608804516 | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ναυπηγών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 1996 | |
heal.bibliographicCitation | Bratsos, A.G. and Twizell, E.H. (1996) The solution of the sine-Gordon equation using the method of lines. International Journal of Computer Mathematics. [Online] 61 (3-4), pp.271-292. Available from: http://www.tandfonline.com [Accessed 05/06/2015] | en |
heal.abstract | The method of lines is used to transform the initial/boundary-value problem associated with the nonlinear hyperbolic sine-Gordon equation, into a first-order, nonlinear, initial-value problem. Numerical methods are developed by replacing the matrix-exponential term in a recurrence relation by rational approximants. The resulting finite-difference methods are analysed for local truncation errors, stability and convergence. The results of a number of numerical experiments are given. | el |
heal.publisher | Taylor & Francis | en |
heal.journalName | International Journal of Computer Mathematics | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: